
SHA-3 Instruction Set Extension for A 32-bit RISC Processor Architecture

Ahmed S. Eissa, Mahmoud A. Elmohr, Mostafa A. Saleh,
Khaled E. Ahmed, Mohammed M. Farag

Electrical Engineering Department, Faculty of Engineering, Alexandria University,
Alexandria, Egypt

eissa.s.ahmed@gmail.com, mahmoud.a.elmohr@ieee.org, moustafa.i.saleh@gmail.com,
k.e.elsayed@ieee.org, mmorsy@alexu.edu.eg

Abstract—The Secure Hash Algorithm (SHA-3) is a crypto-
graphic hash function widely used in most security applica-
tions. The execution of the SHA-3 function is computationally
intensive on lightweight embedded RISC processors. In this
work, we advance a SHA-3 Instruction Set Extension (ISE)
to improve its performance on a 32-bit MIPS processor. Two
ISE approaches are proposed, namely native datapath and
coprocessor-based ISEs. The ISE is developed with the aid of
Codasip Studio, and the extended processor is implemented
and benchmarked on a Xilinx Virtex-6-XC6VLX75t FPGA.
The benchmarking results exhibit a 21% and 43% increase in
the execution speed of the SHA-3 algorithm on the MIPS pro-
cessor at the expense of 9% and 26% resource overheads for
the native datapath and coprocessor-based ISEs, respectively.

Index Terms—SHA-3, Instruction Set Extension, Application-
Specific Instruction Set Processor, MIPS, RISC.

1. Introduction

In 2015, the National Institute of Standards and Tech-
nology (NIST) announced Keccak as the new Secure Hash
Algorithm (SHA-3) standard [1]. Keccak is a sponge con-
struction with an arbitrary input and output length that
repeatedly performs five permutations on a state array of
5×5 lanes each 64-bit length. Each permutation consists of
the iteration of a simple round function limited to bitwise
XOR, AND and NOT and rotations [2]. The execution of the
SHA-3 function is computationally intensive on lightweight
embedded RISC processors because of the large size of the
SHA-3 state. Instruction Set Extensions (ISEs) can be ap-
plied to improve performance of the SHA-3 computation on
such processors. In [3], various ISEs have been presented for
a 16-bit PIC24 microprocessor to accelerate the computation
of the five SHA-3 candidates. In this work, we advance two
ISEs to speedup the SHA-3 computation on a lightweight
32-bit MIPS processor [4] with the aid of Codasip Studio,
an automated ASIP development environment [5].

2. SHA-3 Instruction Set Extensions

A custom 32-bit five-stage pipelined MIPS processor
is implemented that only includes logic and arithmetic in-
structions without overflow, memory instructions load and

store word, branch and jump instructions. Two ISE variants
are advanced: the native datapath and the coprocessor-based
ISEs. The syntax of the added instructions and their high-
level description are provided in Table 1 and Table 2.

Native Datapath SHA-3 ISE: In this approach, the
SHA-3 bottlenecks are tackled by introducing minor mi-
croarchitectural modifications to the MIPS processor native
datapath. Four new instructions are added to the MIPS
instruction set architecture (ISA): AndNot, Rot1, Rot2
and MFLeast. To enable the ISE, the MIPS execute stage
is modified as shown in Figure 1. For the rotation instruc-
tions, two special internal registers are inserted to hold the
intermediate value for the 64-bit rotation. A multiplexer is
inserted to switch between the most and least significant bits
in different cycles. For the AndNot instruction, an inverter is
inserted as additional input to the ALU source multiplexer.

Coprocessor-based SHA-3 ISE: In this approach, the
SHA-3 bottlenecks are resolved by adding a coprocessor that
operates on multiple inputs at once. Five new instructions
are added: LWAu, XOR5, Chi, Rot, and SWLeast. The
microarchitecture of the SHA-3 coprocessor is shown in
Figure 2. To keep the MIPS register file structure unchanged,
five auxiliary registers are added to the decode stage to
supply parallel inputs to the Co-ALU. Since only 32-bit
data can be stored in the memory in one cycle, the extra bits
are held in an internal register to be stored in memory in
another cycle. Auxiliary register address is assigned by the
instruction bits[18:16] which are also used as an immediate
index for the Chi instruction.

3. Results and Evaluation

The extended MIPS processor is synthesized and tested
on a Xilinx Virtex-6 XC6VLX75t FPGA. To illustrate the
enhancements gained by the proposed SHA-3 ISEs, our
extended architectures are compared to the basic MIPS
processor in terms of the SHA-3 computation time measured
in the number of cycles to hash one byte, processor area in
the number of FPGA slices, and memory utilization in bytes.
Table 3 provides a comparison between our basic MIPS, the
native datapath and coprocessor-based extended MIPS, and
the Keccak-extended PIC24 processor presented in [3].

The results show a reduction of the SHA-3 program
execution time by 18% and 30% which is equivalent to a

TABLE 1. NATIVE DATAPATH ISE INSTRUCTIONS

Instruction Description

AndNot
AndNot $destination, $source1, $source2

$destination← (∼ $source1)&$source2

Rot1

Rot1$source1,$source2
if $source2 < 32 then

Most← $source1� $source2
Least← $source1� (32− $source2)

else
Least← $source1� ($source2− 32)
Most← $source1� (64− $source2)

end if

Rot2

Rot2 $destination, $source1, $source2
if $source2 < 32 then

Least← Least|($source1� $source2)
Most← Most|($source1� (32− $source2))

else
Most← Most|($source1� ($source2− 32))
Least← Least|($source1� (64−$source2))

end if
$destination← Most

MFLeast
MFLeast $destination

$destination← Least

TABLE 2. SHA-3 COPROCESSOR-BASED ISE INSTRUCTIONS

Instruction Description

LWAu
LWAu $destinationAu, #offset($base)

Executed by the regular ALU:
$destinationAu← memory[$base+#offset]

XOR5

XOR5 #offset($base)
Executed by the additional ALU:
Result← $Au0⊕ $Au1⊕ $Au2⊕ $Au3⊕ $Au4
Executed by the regular ALU:
memory[$base+#offset]← Result

Chi

Chi #index, #offset($base)
Executed by the additional ALU:
Result ← $Au[#index] ⊕ ((∼ $Au[#index +
1])&Au[#index+ 2])
Executed by the regular ALU:
memory[$base+#offset]← Result

Rot

Rot #offset($base)
Executed by the additional ALU:
{Most, Least} = {$Au0, $Au1} � $Au2
Executed by the regular ALU:
memory[$base+#offset]← Most

SWLeast
SWLeast #offset($base)

Executed by the regular ALU:
memory[$base+#offset]← Least

ALU Control

Most Reg

RDlE

16 SrcA

Zero Extend Im mediate
SrcB
Least Reg

ALUOutSel

ALU Out

Figure 1. MIPS ALU modifications to enable native datapath ISE

Auxiliary
Registers

Additional
ALU

Instruction 18:16

A

WD

RegularWriteDataE
To result Mux

From
result Mux

MostLeastSel NatAltSel

ExecuteDecode Data Memory Write Back

Chi index /Reg WA

MemWD

Figure 2. SHA-3 coprocessor datapath

21% and 43% speedup in the computation; and a reduction
in the code size by 4% and 6% for the native datapath and
coprocessor-based ISEs, respectively. Both extended MIPS
processors exhibit relatively large area overheads of 9% and
26% because only a small subset of the reference MIPS ISA
is implemented. Comparing our results to the PIC24 ISE
results depicts an equivalent performance improvement, as
a percentage, and a significant reduction in the total code
size; whereas the PIC24 ISE achieves a better code size
reduction percentage and a smaller absolute execution time.

TABLE 3. IMPLEMENTATION RESULTS

Execution time Area Code memory
Cycles/byte # of Slices Bytes

Reference MIPS 254 6074 1928
Native ISE 209 (82%) 6595 (109%) 1852 (96%)

Coprocessor ISE 178(70%) 7645 (126%) 1812 (94%)
PIC24 [3] 188 – 3480

PIC24+ISE [3] 132 (70%) – 2415 (69%)

4. Conclusions

In this paper, we presented two ISEs, namely native
datapath ISE and coprocessor-based ISE, to improve per-
formance of the SHA-3 computation on a lightweight 32-
bit MIPS processor. The extended MIPS processor is syn-

thesized on a Virtex 6 FPGA, the native datapath and
coprocessor-based ISEs speedup the execution of the SHA-
3 algorithm by 21% and 43%, respectively. The resource
utilization of the extended MIPS processor, however, is
increased by 9% and 26% for the proposed ISEs. Despite
that the proposed SHA-3 ISEs are specifically developed for
the MIPS ISA, they can be generally applied to other 32-bit
RISC processor architectures. As a future work, we plan to
investigate further performance improvements of the SHA-3
standard on other embedded processor architectures.

References

[1] Penny Pritzker and Patrick D Gallagher. SHA-3 standard: Permutation-
based hash and extendable-output functions’. Information Tech Lab-
oratory National Institute of Standards and Technology, pages 1–35,
2014.

[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak sponge function family main document. Submission to NIST
(Round 2), 3:30, 2009.

[3] Jeremy Hugues-Felix Constantin, Andreas Peter Burg, and Frank K
Gurkaynak. Investigating the potential of custom instruction set exten-
sions for SHA-3 candidates on a 16-bit microcontroller architecture.
Technical report, Cryptology ePrint Archive, 2012.

[4] David Harris and Sarah Harris. Digital Design and Computer Archi-
tecture. Elsevier, 2012.

[5] Codasip Ltd. www.codasip.com.

