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Abstract—Security is a major challenge preventing wide
deployment of the smart grid technology. Typically, the classical
power grid is protected with a set of isolated security tools
applied to individual grid components and layers ignoring their
cross-layer interaction. Such an approach does not address the
smart grid security requirements because usually intricate attacks
are cross-layer exploiting multiple vulnerabilities at various grid
layers and domains. We advance a conceptual layering model of
the smart grid and a high-level overview of a security framework,
termed CyNetPhy, towards enabling cross-layer security of the
smart grid. CyNetPhy tightly integrates and coordinates between
three interrelated, and highly cooperative real-time security
systems crossing section various layers of the grid cyber and
physical domains to simultaneously address the grid’s operational
and security requirements. In this article, we present in detail the
physical security layer (PSL) in CyNetPhy. We describe an attack
scenario raising the emerging hardware Trojan threat in process
control systems (PCSes) and its novel PSL resolution leveraging
the model predictive control principles. Initial simulation results
illustrate the feasibility and effectiveness of the PSL.

Keywords— Smart Grid, Smart Grid Security, Cross-Layer
Security, Physical Layer Security, Process Control Security.

I. INTRODUCTION

The smart grid is a cyber-physical system that tightly
integrates control, computation, and communication technolo-
gies in the electrical power infrastructure. The smart grid
has emerged as the next generation power grid aiming at
enhancing the efficiency, reliability, and resilience of legacy
power systems by employing information and communica-
tion technologies (ICT) [1]. To enable the smart grid global
vision, widespread sensing and communication between all
grid components is established via communication networks
and managed by cyber systems. Extensive deployment of and
reliance on ICT inevitably expose the smart grid to cyber
security threats increasing the risk of compromising reliability
and security of the electrical power infrastructure.

The scale and complexity of the smart grid create sev-
eral vulnerabilities and provide numerous attack entry points.
Therefore, security as a major challenge preventing wide de-
ployment of this promising technology. Typically, the classical
power grid is protected with a set of isolated and uncoordinated
security tools applied to individual grid components and layers
ignoring their cross-layer interaction. Such an approach does
not address the smart grid security requirements. Usually,
intricate attacks exploit multiple vulnerabilities of various grid
systems and layers leveraging isolation and lack of awareness
and cooperation between security tools protecting them.

Figure 1 depicts a conceptual hierarchical model of our
development for the smart grid as a set of correlated interacting
layers. At the top of the model is physical systems and devices
participating in the generation, transmission, distribution, and
consumption sectors of the grid. The physical domain is
managed and operated by cyber systems and instruments that
provide local control and computation capabilities required by
the physical systems in addition to enabling inter- and intera-
communication between the physical and cyber domains.

The physical domain is tightly coupled to the cyber domain
via a grid network represented by a network layer encapsulat-
ing both data and control traffics. The smart grid network is an
integration of (i) electric power grids that delivers electricity
from power generation sources to end-users and (ii) effective
two-way digital communication networks between utilities
and consumers that monitors, manages, and controls the grid
operations, renewable resources, and energy demands [2]. The
cyber domain is represented by two sub-layers, the cyber or
application sub-layer where the management and control logic
resides, and the hardware sub-layer hosting such logic and
providing the needed interfaces for data exchange. The high-
level system management resides mainly in the upper two
layers, the cyber layer where the management and control
applications and software which are operated by a set of
system operators and administrators. As depicted in the model,
each layer is supported by a cyber layer comprising a set of
hardware components and software systems.

Each layer in the presented model denotes a broad hi-
erarchical model encapsulating interrelated sub-layers. For
example the network layer in the smart grid model is a
representation of the hierarchical OSI model. Usually existing
security systems address security of a single layer or sub-layer
in the hierarchical model neglecting security concerns of other
layers and interaction between interrelated layers. However, the
smart grid with its large scale, complexity, and importance is
an easy target for cross-layer cyber attacks exploiting the lack
of collaboration between security tools at different layers.

We advance an integrated security framework, termed
CyNetPhy, supported by three main security layers, namely, the
Cyber Security Layer (CSL), the Behavior Estimation Layer
(BEL), and the Physical Security Layer (PSL) collaborating
towards enhanced, cross-layer smart grid security. The CSL is
mainly responsible for securing the cyber domain by super-
vising, managing, and coordinating between existing security
tools. A set of smart distributed mobile agents pervasively
crawls the grid’s cyber domain to execute the CSL missions.
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Fig. 1. Smart grid hierarchical model and layers interaction with CyNetPhy

The BEL monitors, analyzes and learns patterns of the grid net-
work data and control flows independently to extract semantic
feedback about behavior of various grid systems and layers. A
set of distributed, autonomous, intelligent BE agents equipped
with machine learning algorithms and intelligence techniques
is employed to reason about semantics that can help in
recognizing normal/abnormal behavior of various grid systems
and components. The PSL is responsible for monitoring and
protecting individual cyber systems with direct access to the
physical domain. Security policies are derived from the system
physical characteristics and component operational specifica-
tions, and translated into security monitors and components
that can be implemented in either hardware- or software-
based platforms. Hardware-based security is preferred due to
the hardware immunity against software-based attacks and
the superior performance offered by hardware [3]. A set of
the CSL mobile agents is dedicated to enabling cross-layer
interaction between the three security layers in real-time.

In this article we present an overview of the CyNetPhy
security framework with emphasis on the PSL. Particularly,
we focus on process control systems (PCSes) as an important
part of the smart grid and as a clear example demonstrating
our approach to secure the physical layer. More specifically,
we advance a novel approach leveraging the model predictive
control principles to secure PCSes vulnerable to the hardware
Trojan threat. The remaining of this paper is organized as
follows: Related security solutions for PCSes are presented in
Section II. A high-level overview of the CyNetPhy framework
is introduced in Section III. More technical depth for the PSL
is advanced in Section IV. The PSL Trojan resolution method
in PCSes is presented in IV-A, and preliminary simulation
results of the security system developed for an automatic
voltage regulator (AVR) PCS are presented in Section IV-B.
Conclusions and future work are portrayed in Section V.

II. BACKGROUND

Cyber attacks against the smart grid exploits the cyber
domain as an easy access point to launch sophisticated attacks
targeting the physical domain either indirectly by compromis-
ing the cyber and network domains, or directly by corrupting
cyber systems controlling the physical domain [4]. Liu et al.
presented an overview of relevant cyber security and privacy
issues in smart grids [5]. Every aspect related to the cyber
technology in the smart grid has potential vulnerabilities due

to inherent security risks in the classical cyber environment.
Interacting with the physical world shifts these vulnerabilities
from the cyber to the physical domain. Current smart grid
security systems lack for real-time situation awareness and
cooperation between grid’s components and defense tools. This
isolation has serious impact not only on the operational aspects
of the grid, but also on the security and safety aspects.

Recent attacks against power systems such as Stuxnet
highlight vulnerabilities and the inadequacy of existing security
systems. The Stuxnet worm infects the cyber domain, spreads
via networks and removable storage devices, and exploits four
zero-day attacks to manipulate the physical equipment. The
primary target is believed to be an Iranian nuclear power plant,
and likely caused a 15% drop in production of highly enriched
uranium [6]. Defense against such complex attacks requires co-
ordination and collaboration between various security systems
crossing different layers to address the grid security concerns.

Attacks against the cyber layer operating the physical
systems have a serious impact to security because of its direct
interaction with the physical domain. Usually cyber attacks
against this layer aim at disrupting the underlying physical sys-
tems by compromising the operation of the cyber components.
PCSes are a typical example of security-critical cyber systems
with direct access to the physical domain. PCSes are automatic
feedback control systems where an embedded controller uses
sensor measurements of a physical plant to compute feedback
signals preserving system stability. Due to their importance in
the power grid and their connection to national security, PCSes
are exposed to a growing number of attacks [7]. PCSes are
usually built using untrusted components and rely on perimeter
security defenses rendering them vulnerable to insider threats
and intricate outsider attacks. Recent attacks against PCSes
such as Stuxnet have highlighted the inherent vulnerabilities
and the inadequacy of existing security solutions [6].

Typically, security defenses in PCSes monitor either the
controlled physical plant or the embedded PCS to detect be-
havior deviation from reference specifications. Sha introduced
a protection method based on monitoring physical process
measurements to detect faults [8] as illustrated in Figure 2(a).
Dai et al. advanced a fault detection scheme based on ob-
serving PCS responses to new sensor inputs [9] as shown in
Figure 2(b). Cárdenas et al. presented a physical model-based
attack detection method complementing intrusion detection
methods for networks and computer systems [10] as depicted
in Figure 2(c). Unfortunately, these approaches are reactive and
can only detect erroneous PCS behavior after its occurrence
which might allow the controlled physical system to become
unstable before adequate countermeasures can be applied.

III. CYNETPHY SECURITY FRAMEWORK

We present a three-layer framework, called CyNetPhy,
with a cross-layer distributed, smart, real-time defenses to
simultaneously address security of the cyber, network, and
physical domains against pervasive and persistent attacks. The
individual defense systems address the major concerns of smart
grid security and collaborate together with autonomous man-
agement and coordination to enable prompt detection of well-
known and zero-day cyber attacks. The security framework
fills the gap between research and practice by advancing an
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integrated solution addressing security at different layers and
domains rather than just addressing a single aspect or layer.

The CyNetPhy framework has three phases of opera-
tion: real-time monitoring, anomalous event investigation, and
proactive actuation. In the monitoring phase, the three security
systems monitor and analyze real-time data and operation of
the underlying protected layers and forward abstract reports to
the BEL to be analyzed at a higher abstraction level. Upon de-
tecting anomalous or malicious behavior, the concerned layer
initiates the investigation phase where the three security layers
exchange relevant data to ascertain about the event and initiate
the resolution procedures. In the actuation phase, the concerned
layer applies a set of countermeasures to resolve confirmed
security incidents such as raising alarms to system operators,
isolating suspect systems, and finding suitable alternatives.

The first layer of CyNetPhy, termed CSL, works mainly
on the cyber domain and cooperates with the other two layers
to achieve its designated objectives. The CSL enables Moni-
toring, Analysis, Sharing, and Control (MASC) technology to
ensure effective smart grid security. Most current technologies
did not consider that cyber and physical convergence would
need a new paradigm treating cyber and physical components
seamlessly. Furthermore, information sharing was severely
curtailed by enforcing perimeter defenses to preserve privacy
of the smart grid. These limitations negatively impact quality,
reliability, survivability, and promptness of security services.

The CSL is an evolution of the cyber MASC framework
CyMASC presented in [11] towards realizing pervasive MASC
for enhanced smart grid security. The CSL is an intrinsically-
resilient, situation-aware system that intelligently manages the
existing security tools to provide evolutionary security ser-
vices. The CSL intelligently mixes and matches heterogeneous
tools and control logic from various sources towards dynamic
security missions. The CSL is also elastic where situation-
driven MASC solutions can be dispatched using dynamic sets
of mobile agents circulating the smart grid network rather than
using pre-deployed components. Such an approach provides
evolvable, pervasive and scalable MASC services.

The CSL circulates context-driven, functionally customiz-
able mobile agents into the smart grid body to pervasively
monitor, analyze and control those components. A mobile
agent is a composition of computer software and data encapsu-
lated in a migratable (movable) format. Mobile agents leverage

one of the “write once, run anywhere” (WORA) languages like
Java, or C# to build a partially compiled code that can run on
any host machine with the needed libraries installed. Mobile
agents autonomously move from one computer to another
in the network to execute a certain mission. The mobility
feature of mobile agents enables them to travel in the smart
grid network and carry relevant data along with them. We
securely design the agents to hide and protect security-relevant
information. Due to reliance on several mobile agents rather
than static tools, security of the smart grid is not vulnerable to
a single point of failure, and the CSL protection can continue
even if individual nodes fail or become unavailable

The main functionality of the CSL mobile agents is to
execute defense missions provisioned by the grid operator
and defense service provider. A defense mission is composed
of a set of sensing and affecting tasks involving information
gathering, partial analysis, control, and manipulation of the
grid components. Due to their mobility feature, the CSL mobile
agents are responsible for inter-layer communication and data
exchange tasks in the CyNetPhy framework. The CSL utilizes
such pervasive activities to build real-time global views of the
entire grid reflecting the quality of the security service and
the current state at each point. These views are intelligently
analyzed to facilitate evolution of security services [12].

The hierarchical structure of the CSL sensing and affecting
framework is composed of three main layers: management
layer, sensing and affecting abstraction layer, and the defense
delivery tools. The sensing and affecting tool layer is a set
of logical sensing or affecting APIs stored in the machine
local libraries. These tools are autonomously abstracted at run-
time into uniform sensing and affecting agents participating in
the creation of a cooperating agent group conducting specific
defense missions. The CSL agent groups are anonymously
constructed, managed, and controlled at run-time by the CSL
management layer, which is also responsible for collecting,
correlating, and analyzing sensor feedback data.

In addition to the smart utilization of the mobile agents in
provisioning on-demand conventional defense services to the
cyber hosts, the CSL collects host-oriented real-time feedback
from its agents investigating various aspects that might be
an indication of malicious behavior evading detection by
existing security tools. The CSL alternates/mixes different
security/control missions from different sources to provide
security services to the same grid host. This procedure involves
sharing security experience and tools between hosts. Shared
materials are autonomously checked for privacy violations be-
fore utilization or storage. The CSL enables the security tools
in the grid’s cyber domain to continuously evolve their services
and capabilities that can lead to more accurate and prompt
detection of known attacks and better chance in detecting zero-
day attacks. This layer is also responsible for decision making
based on the sensing feedback, previous historical events, and
CyNetPhy security guidelines. Such decisions might involve
composing more capable affecting defense missions for reso-
lution or new sensing missions for deeper investigation [12].

The second layer of CyNetPhy, termed BEL, is mainly con-
cerned with behavior awareness of the smart grid via analyzing
and learning patterns indicating normal/abnormal behavior of
different grid systems and components. We hypothesize that
grid measurement data exhibits multi-dimensional patterns that



can be learned to extract data features and semantics. Such
patterns can reveal precious information about the grid security
state. The BEL operation relies on i) collecting raw data
concerning the smart grid from the network data and control
traffic flows; and ii) learning patterns of captured data to extract
a group of features and reason about semantics. The BEL is
the intelligent part of CyNetPhy that has the ability to read
between the lines and initiate proactive measures to preempt
potential cyber threats in collaboration with the PSL and CSL.

The Behavior learning process conducted by the BEL
involves a set of learning and evolution operations. The BEL
captures raw data from the power and information flows in
the smart grid. This data is represented as attribute-value
pairs using specific data representation models. Then, the BEL
employs classification techniques in order to classify extracted
attributes based on their values. Each set of classified attributes
related to a specific grid component, layer, or domain are fed
into behavior semantics reasoning models implemented using
monolithic or hybrid intelligence techniques such as Hidden
Markov Model (HMM). Operation parameters of reasoning
models are designed and refined based on historical data,
which are used for training the models in a supervised or an
unsupervised way. According to the input group of attributes to
reasoning models and attributes’ values, the models will extract
correlated semantic topics which can characterize behavior of
various grid components at different levels of granularity.

A set of distributed, autonomous, intelligent BE agents
is implemented over secure, high-performance servers and
equipped with machine learning algorithms and intelligence
techniques to reason about semantics that can help in recog-
nizing normal/abnormal behavior of various grid elements. The
BE agents use a set of distributed dynamic reasoning models in
order to fine-granulate semantics extraction processes and build
efficient dynamic behavior models regarding normal/abnormal
behavior of diverse grid components. Due to the complexity
and scalability of the smart grid, the BE agents are distributed
and managed in a hierarchical fashion. A set of agents inspects
behavior of a particular part of the grid according to specific
criteria and sends abstract reports to higher hierarchical agents.

The BE agents also utilize data profiling and dimensional-
ity reduction techniques to reduce dimensions of large-scale,
high-dimensional measurement data and to find similarities
among these data. Such an approach enables development of
resource-efficient agents and helps in mitigating the problem
of “data tsunami” [13] arising due to the massive amount
of data collected by high-frequency data measurement units.
Semantic reasoning techniques of our development will be
able to work over reduced-dimensional data. In our previous
work, we presented a network memory management system for
semantics extraction services which can be implemented over
the BE agents to enable the BEL operations and goals [14].

For the AVR control system case study presented in this
paper, the BE agents will employ HMM for learning and classi-
fying behavior of running AVRs in a power system. The HMM
operation relies on a set of attribute-value profiles represented
by agents in their internal memories, according to the raw data
collected from the power and information flows in the power
generator. A profile might comprises attributes such as “input
voltage level”, “output voltage level”, “load type” and “line
regulation”. Based on the HMM parameters, training using

historical data, and values of the selected attributes, HMM
outputs the most likelihood observations which are stored
as interrelated semantics for AVR behavior. For example, a
learned AVR semantic topic might be “normal AVR behavior
in residential load includes good line regulation”.

The third layer of CyNetPhy, termed PSL, is mainly
concerned with security of individual systems and components
operating the physical layer in the grid. Direct interaction
with the physical domain is a featured property of this layer
distinguishing it from other smart grid layers. The physical
layer comprises a set of application-specific embedded systems
and devices with clearly defined functionalities and objectives.
Smart meters, Remote Terminal Units (RTUs), Programmable
Logic Controllers (PLCs), and PCSes are typical examples of
the units protected by the PSL. Usually cyber attacks against
this layer aim at misleading the upper layers of the grid or dis-
rupting the underlying physical systems by compromising the
operating cyber components. Clarity of objectives for both the
physical layer and the associated cyber threats enables framing
security policies and specifications capturing secure and trusted
operation of the protected systems. The PSL collaborates with
the BEL and CSL by exchanging relevant data, delivering
accurate measurements about particular cyber systems, and
applying adequate countermeasures in the physical domain.
In the next section we detail the PSL and advance an attack
scenario against a PCS of a power plant and its PSL resolution.

IV. PHYSICAL SECURITY LAYER

Typical system behavior and specific security checks are
derived from the system physical characteristics and models
and component operational specifications, and translated into
hardware guards and wrappers to enable persistent monitor-
ing and verification of the protected systems at run-time.
Proliferation of hardware attacks and their direct impact to
the cyber and physical domains is the main motivation to
consider hardware-based security. The PSL security compo-
nents are synthesized in reconfigurable hardware to meet
various objectives, including: improved security of hardware
defenses, immunity against software-based attacks, the ability
to detect insider and hardware-based threats, superior hardware
performance, and the flexibility provided by reconfigurable
hardware. Custom-designed hardware monitors and wrappers
are attached to input and output (I/O) interfaces of the system
under protection with the main goal of detecting malicious and
anomalous activities associated with potential cyber attacks in
real-time. The PSL security components are an evolution and
a direct application of the predictive security system presented
in [15] towards protecting PCSes in the smart grid.

In addition to their real-time monitoring role, hardware
security components will act as trust anchors—independent
monitoring and control devices with access to the system
interfaces and inner components—for the protected systems.
Chavez presents the concept of trust anchors to protect PCSes
against lifecycle attacks in [16]. Trust anchors can provide
unbiased measurements at the lowest level of a system (the
hardware-level) that independently verify system operation, re-
veal deceptive malicious behavior, independently attest to sys-
tem state, and verify the correctness of system tests. They also
offer unimpeded control that makes it possible to implement
trusted control functions, remove discovered malicious content,



execute system tests, and analyze suspected system compro-
mise [17]. Trust anchors are the PSL components responsible
for interacting with the CSL and BEL. Specific security actions
can be initiated based on issued requests including measuring
physical quantities, applying specific checks, reporting events
and raising alarms to the upper layers, applying a recovery
strategy, and switching to local or remote backup systems.

A. Model Predictive Security of Process Control Systems

A PCS is an embedded platform realizing automatic feed-
back control for physical processes. PCSes are often assembled
from untrusted components provided by the global supply
chain. Trojan horses are emerging threats with malicious
intentions that can be introduced into an embedded system
design as either hardware or software modifications to the
system implementation during different phases of the system’s
lifecycle. Trojans are difficult to detect using conventional
pre-deployment verification techniques and perimeter security
defenses, and their effects to the host platform range from
subtle disturbances to complete system failures. We present a
novel approach to predict and preempt Trojan threats in PCSes
as an example of PSL treatment of potential cyber threats in the
physical domain. More specifically an AVR PCS, which keeps
the voltage level constant at rated value in power generators,
demonstrates the Trojan and PSL resolution.

The threat model assumes a Trojan-infected PCS supplied
by an untrusted supply chain and controls a security-critical
physical system. The Trojan is detected using neither perime-
ter security tools nor pre-deployment verification and Trojan
detection methods. The Trojan is kept dormant and is activated
upon occurrence of a rare triggering condition or after passing
a specific period of operation (time-bomb). The Trojan payload
aims at compromising the PCS functionality to rapidly push the
controlled physical process out of its stability conditions. Such
an attack cannot be detected in the nick of time using classical
reactive security systems that might allow the physical process
under control to become unstable before corrective actions can
be applied. Fortunately, the PSL employs a proactive approach
that enables detecting and preempting Trojan threats.

The PSL acts as a last-line-of-defense against cyber threats
with the main objective of providing prompt measures in
collaboration with the BEL and CSL to protect the physical
domain, particularly PCSes, from threats evading detection
by design-time verification methods and perimeter security
defenses. This objective can be achieved by identifying such
threats ahead of time before affecting the physical domain, or
in other words by predicting them. The main idea to predict
the Trojan threats is to emulate the control process at run-time
in an accelerated-time manner to give a short-term projection
of future PCS actions. To achieve this, an accelerated model of
the physical process is controlled by an identical instance of the
PCS which will be subject to the same operating conditions.
To maintain convergence with the physical plant, the model’s
state is periodically synchronized with the physical plant’s
estimated state. The accelerated control system is monitored to
foresee erroneous controller behavior. For the physical domain,
specifications for normal system behavior are already known
and precise models of physical processes usually exist. Such
specifications and models are used to implement the security
monitors in hardware. Once a cyber threat is detected in

the accelerated control system, a preemptive measure can be
applied such as switching the operating PCS to a backup one.

This approach exploits the operation speed variance be-
tween a physical process and its model, which is analogous to
the difference between running and simulating the physical
process. The idea of using an accelerated accurate model
to predict controller behavior is known as Model Predictive
Control (MPC) in the automatic control literature [18]. The
main objective of MPC is to control a multiple-input multiple-
output (MIMO) process while satisfying inequality constraints
on the input and output variables. In this work, we advance a
Model Predictive Security system (MPS) and use it differently
to predict future controller actions, detect erroneous behavior,
and preempt consequences to the physical system.

Figure 3 depicts the high-level architecture of the MPS
to predict Trojan threats in PCSes developed for a general
feedback control system. Basic components of the MPS are:
• The operating control system containing a PCS em-

bedded controller, a distinct backup controller, a
switching circuit, and a state estimator. This system
runs at the typical sampling rate of the physical plant.

• The accelerated MPC system containing an accel-
erated state-space plant model implemented on an
embedded system, and an identical instance of the
PCS controller. This system runs n times faster than
the operating control system.

• The PSL security modules including an interface
guard for the operating control system and a moni-
toring module for the accelerated control system.

• A state synchronization switch and timing modules for
clock generation and time management.

The security monitor module observes the accelerated MPC
system to check the PCS operation compliance to the PSL
security specifications. Detection of abnormal behavior in the
accelerated MPC system triggers the interface guard in the
operating control system to switch the operating controller to
the backup one and raise an alarm to the BEL via the CSL
mobile agents. The synchronization module is responsible for
periodically updating the model’s state with the estimated state
of the physical process. A sample and hold module periodically
updates the accelerated MPC system’s input with the physical
plant’s reference input. The timing module is responsible for
clock generation and time management for the whole system.
For further details about the concepts, organization, and time
management in the MPS we recommend reading [15].

B. Evaluation and Results

In order to clarify and evaluate the MPS role in the PSL, an
AVR excitation controller of a synchronous power generator is
presented as a case study. The main objective of power system
operation and control is to maintain a continuous supply of
power with an acceptable quality and voltage profile. AVRs are
cost-efficient PCSes widely deployed in power generators [19].
The excitation system maintains the generator voltage and
controls the reactive power flow using an AVR keeping the
voltage magnitude of a generator at a rated value. Thus,
cyber attacks targeting the AVR PCS can directly ruin the
controlled power generator and indirectly deteriorate reliability
and efficiency of the smart grid . Nevertheless, the MPS can be
generally applied to other physical systems in the smart grid.
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Fig. 3. High-level architecture of the MPS

Figure 4(a) depicts a one-line diagram of the open-loop
power system, including a synchronous generator, exciter,
amplifier, and a sensor, and their I/O transfer functions. The
physical parameters of the amplifier, exciter, and generator
shown in Table I are provided by [19]. Figure 4(b) shows a
block diagram of the feed-forward digital PID controller. The
discrete-time PID controller is developed in the parallel form
with forward Euler integration and filtering methods, and have
the following transfer function:

G(z) = Kp +KiTs
1

z − 1
+Kd

N

1 +NTs
1

z−1

(1)

Figure 4(c) depicts a block diagram of the generator state-
feedback controller realized using the linear-quadratic regu-
lator (LQR) optimal control technique [20]. LQR controllers
are widely deployed, and their structure helps to present
our concepts and architecture effectively, nevertheless, our
approach is still applicable to other control techniques. The
main control objectives are preserving system stability, mini-
mizing the output error and control effort, and optimizing the
transient response characteristics. The continuous-time state-
space equation describing the generator is given by:

ẋ = Ax+Bu
y = Cx+Du

where A =

[−13.5 −4.688 −1.563
8 0 0
0 2 0

]
, B =

[
4
0
0

]
, C =

[0 0 3.906], and D = 0.

To design the LQR state feedback controller, we define
the state-cost weighted matrix Q = pCTC, and the con-
trol weighted matrix R = 1, for simplicity. The weighting
factor p is chosen by trial and error in order to tune the
step response to achieve the control objectives. The control
matrix K is calculated for the closed-loop poles satisfying
the LQR optimization objectives, and the reference scaling
precompensator gain Nbar and the state observer gain L are
calculated, accordingly. Table I shows the digital PID and
LQR controller gains which are tuned and calculated using
the Matlab control toolbox for a sampling time Ts = 10 msec.

TABLE I. PHYSICAL SYSTEM PARAMETERS AND CONTROLLER GAINS

System parameters PID Observer (L) LQR (K)
Ka 10 Ta 0.1 Kp 0.1888 67.6962 2.0819
Ke 1 Te 0.4 Ki 0.1842 21.0692 4.5902
Kg 1 Tg 1 Kd 0.0262 0.6196 11.4536
Ks 1 Ts 0.05 N 5.3815 Nbar=3.0333
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Fig. 4. Open-loop, PID, and LQR AVR controllers of a synchronous generator

We developed both time- and event-triggered Trojans and
inserted them into the PID and LQR controllers, respectively.
The time-triggered Trojan is kept dormant for a specific time
duration and when activated it bypasses the PID controller by
directly connecting its input and output. The event-triggered
Trojan counts zero-crossing events in the state signals Xe and
is activated at a specific count with a payload that changes the
LQR controller gain K. For both Trojans, the payload aims at
rapidly pushing the controlled generator out of its stability.

The MPS architecture shown in Figure 3 was modeled and
simulated in Matlab Simulink for both classical (PID) and
modern (LQR) PCSes. The accelerated MPC system sampling
time Ts is 1 msec which is 10 times faster than the operating
control system, resulting of a time scaling factor of n = 10. For
the discrete-time accelerated MPC system, scaling down the
sampling time of the plant model by a factor of n enables the
system to run n times faster than the operating control system.
Synchronization time Tsync between the accelerated model and
estimated physical system states controls the time period of the
foreseen controller actions, termed prediction window Tpred.
A moving prediction window enables periodic projection of
the future system state from the updated current system state.
We developed the accelerated MPS for two different values
of Tsync. The time scaling factor n and the Tsync are the
two MPS independent design parameters, and Tpred is the
dependent parameter, where Tpred = nTsync. For more details
about time management in the MPS we refer to [15].

Figure 5 depicts the regulated generator voltage and the
MPS output for both the Trojan-free and Trojan-infected PID
and LQR PCSes. As shown by Figure 5(a), the generator
becomes stable after Tsettling, and the LQR PCS has better
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Fig. 5. Step response of Trojan-infected AVR PCSes and MPS output

transient response characteristics compared to the PID AVR.
For both PCSes, the accelerated MPS foresees the operating
PCS output, and its state is periodically synchronized with the
plant’s estimated state every Tsync to prevent state divergence.
As shown by Figure 5(b), (c), the inserted Trojans are activated
in the LQR and PID operating PCSes at t = 15 sec, and
their payloads cause an abrupt change in the generator voltage
which can instantaneously devastate it if not detected.

Figure 5(b), (c) shows the MPS output for n = 10 and,
Tpred = 1, and 10 sec. As demonstrated by the figure, both
MPSes with different prediction windows foresee the Trojan
payload in the accelerated PCS ahead of time before its real oc-
currence in the operating PCS. The MPS with Tsync = 10 sec,
the larger synchronization time, predicts the fault earlier than
the other one due to its large prediction window size. This
comes at the price of increasing Tsync that might allow for
state divergence and consequently inaccurate prediction. The
MPS with Tsync = 1 sec foresees the fault more frequently
due to its small prediction window size. Once the Trojan is
detected, a switching circuit immediately switches the control
path to a backup controller, which must be a variant of the
infected one to preserve stability of the physical system.

V. CONCLUSIONS

Cross-layer rather than isolated solutions are needed to
increase smart grid awareness and secure it against dexterous
cyber threats. We presented a brief outline of a cross-layer se-
curity framework that integrates three security systems mainly
concerned with the cyber, network, and physical domains sepa-
rately and elaborated on the PSL to protect the cyber systems
having direct access to the physical domain. A novel MPS
for PCSes was advanced and its applicability was established
using modeling and simulation for an AVR PCS. The MPS can
help the smart grid infrastructure withstand an emerging Trojan
onslaught. Hardware realization and experimental testing of the

MPS are under development. Once the realization is complete,
we will be able to asses the overheads and practical applica-
tions of the MPS. The BEL, CSL, and the integrated CyNetPhy
framework, in addition to other aspects and capabilities of the
PSL will be extended in our upcoming work.
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